Quenched large deviation principle for words in a letter sequence

نویسندگان

  • Matthias Birkner
  • Andreas Greven
  • Frank den Hollander
چکیده

When we cut an i.i.d. sequence of letters into words according to an independent renewal process, we obtain an i.i.d. sequence of words. In the annealed large deviation principle (LDP) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In the present paper we consider the quenched LDP, i.e., we condition on a typical letter sequence. We focus on the case where the renewal process has an algebraic tail. The rate function turns out to be a sum of two terms, one being the annealed rate function, the other being proportional to the specific relative entropy of the observed law of letters w.r.t. the reference law of letters, with the former being obtained by concatenating the words and randomising the location of the origin. The proportionality constant equals the tail exponent of the renewal process. Earlier work by Birkner considered the case where the renewal process has an exponential tail, in which case the rate function turns out to be the first term on the set where the second term vanishes and to be infinite elsewhere. In a companion paper the annealed and the quenched LDP are applied to the collision local time of transient random walks, and the existence of an intermediate phase for a class of interacting stochastic systems is established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviation principles for words drawn from correlated letter sequences

When an i.i.d. sequence of letters is cut into words according to i.i.d. renewal times, an i.i.d. sequence of words is obtained. In the annealed LDP (large deviation principle) for the empirical process of words, the rate function is the specific relative entropy of the observed law of words w.r.t. the reference law of words. In Birkner, Greven and den Hollander [3] the quenched LDP (= conditio...

متن کامل

Quenched, Annealed and Functional Large Deviations for One-Dimensional Random Walk in Random Environment

Suppose that the integers are assigned random variables f! i g (taking values in the unit interval), which serve as an environment. This environment deenes a random walk fX n g (called a RWRE) which, when at i, moves one step to the right with probability ! i , and one step to the left with probability 1 ? ! i. When the f! i g sequence is i.i.d., Greven and den Hollander (1994) proved a large d...

متن کامل

LARGE DEVIATIONS FOR RANDOM PROJECTIONS OF `p BALLS BY NINA GANTERT∗ , STEVEN

Let p∈ [1,∞]. Consider the projection of a uniform random vector from a suitably normalized `p ball in Rn onto an independent random vector from the unit sphere. We show that sequences of such random projections, when suitably normalized, satisfy a large deviation principle (LDP) as the dimension n goes to ∞, which can be viewed as an annealed LDP. We also establish a quenched LDP (conditioned ...

متن کامل

Large Deviations for Langevin

We study the asymptotic behavior of asymmetrical spin glass dynamics in a Sherrington-Kirkpatrick model as proposed by Sompolinsky-Zippelius. We prove that the annealed law of the empirical measure on path space of these dynamics satisfy a large deviation principle in the high temperature regime. We study the rate function of this large deviation principle and prove that it achieves its minimum...

متن کامل

Large Deviations and Phase Transition for Random Walks in Random Nonnegative Potentials

We establish large deviation principles and phase transition results for both quenched and annealed settings of nearest-neighbor random walks with constant drift in random nonnegative potentials on Zd. We complement the analysis of Zerner (1996), where a shape theorem on the Lyapunov functions and a large deviation principle in absence of the drift are achieved for the quenched setting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009